Effect of Pressure on the Substitution Reactions of [Pt(dien)X]⁺ Complexes in Aqueous Solution¹

Institute of Physical Chemistry, University of Frankfurt, D 6000 Frankfurt am Main, Robert-Mayer-Srrasse 11,

Institute of Physical Chemistry, University of Frankfurt, D 6000 Frankfurt am Main, Robert-Mayer-Strasse 11, West Germany

Received November 22, 1975

The effect of pressure on the substitution reactions (a) *of* $[Pt(dien)X]^+$ complexes (dien = diethylenetriamine) with a number of nucleophiles, Y, have been studied in *aqueous solution at 25°C and at an ionic strength of* 0.2 *M*, where $X = C\Gamma$, Br^- , Γ , N_3^- and $Y = OH^-$, Γ , N_3^- , NO_2^- , SCN^- and pyridine. The volumes of activa*ion are all negative with the mean value for the nucleophile independent path being* -18 ± 2 *ml mol*⁻¹. Partial molar volumes of the respective substrates and products were measured at 25°C. The data are dis*nucleophile dependent path associative mechanism for the* independent *independent independent and independent independent and independent and independent independent and independent and independent and independent and in pucleophile dependent path, while for the independent* path both associative and dissociative mechanisms are considered.

Introduction

It is well known that square planar complexes of the heavier transition metals with d^8 electron configurations undergo ligand substitution of the type:

$$
ML_3X + Y \rightleftharpoons ML_3Y + X \tag{1}
$$

which, as a rule, follows a two term rate law of the $R = \frac{1}{2}$

$$
Rate = k_1[complex] + k_2[complex][Y] \tag{2}
$$

The reaction schemes (a) and (b), shown in Figure 1, have been proposed in accordance with the obtained rate expression (2). Both schemes include a direct attack by the nucleophile Y on the substrate, *i.e.* the k_2 path. The first order term, k_1 path, is rationalized in scheme (a) by a rate determining dissociation of the ligand \overline{X} followed by a fast reaction of the reactive three-coordinate intermediate with the entering ligand Y_i . According to scheme (b) the same rate law is obtained when the k_1 path consists of a slow bimolecular substitution of X by a solvent molecule S , while the resulting solvent-containing complex reacts rapidly Δ the bulk of the kinetic evidence gives Δt

Although the bulk of the kinetic evidence gives strong support for the associative mechanism in scheme

Figure 1. Alternative reaction schemes for reactions of Pt(II) complexes via a dissociative mechanism (a) or an associative mechanism (b).

(b), no direct proof of its existence has, as yet, been presented. Moreover, in the case of the substrate $[Pt(dien)X]^+$ Basolo, Gray and Pearson⁸ proposed that the mechanism may possess some dissociative character depending on the nature of the leaving group X , *i.e.* some stretching of the Pt-X bond in forming the transition state.

During the last few years the volume of activation, ΔV^* , derived from the pressure dependence of the rate constant of a reaction, has been used in several cases as a criterion in the discussion of mechanisms of cases as a contribution e^{2t} , As pointed out¹¹ the most complex four reactions can be extremely significant contribution to $\Delta V_{\text{exp}}^{\text{t}}$ stems from an intrinsic effect reflecting changes in bonding during the formation of the transition state, bond formation being expected to give a negative contribution to the

A V*exp and bond breaking a positive one. In many α v ϵ_{exp} and bond breaking a positive one. In many examples, especially when charged species are involved, the change in solvation during the development of the transition state results in an additional contribution which modifies the intrinsic effect. This additional effect calls for a special discussion in each particular case. r had the that an accurate determination r and accurate determination \mathbf{r}

we had therefore hoped that an accurate determination of the ΔV^*_{exp} values and the partial molar volumes of the substrates for reactions of type (1) would provide both qualitative and quantitative information as to the nature of the transition state and therefore the mechanism of reaction.

Experimental

Materials

 T and T a $\sum_{n=1}^{\infty}$ ine preparation of $\sum_{n=1}^{\infty}$ and $\sum_{n=1}^{\infty}$ and $\sum_{n=1}^{\infty}$ $X|NO₃$ complexes are generally adequately described in the literature^{8, 12, 13}. However the synthesis¹² of [Pt] $(dien)Br]Br$, which was generally the starting material used to make the other complexes, was modified slightly. Solid NaOH was added to the mother liquor, formed by refluxing K_2PtCl_4 and dien 2HCl and then concentrating the solution on a rotary evaporator, to give a final pH of $ca. 5$, just prior to precipitating the complex by addition of solid $NH₄Br.$ The resulting yield was ca. 65% . Calcd for [Pt(dien)Br]Br: C, 10.5; H, 2.9; N, 9.2; Br, 34.9. Found: C, 10.7; H, 2.9; N, 9.5; Br, 35.8% . The corresponding chloride and iodide complexes were prepared directly by the same method. \mathcal{A} l other salts used were of \mathcal{A}

All other saits used were of reagent grade. The water was passed through an ion exchange column, then doubly distilled.

Rate Measurements μ *Measurements*

rine reactions were followed spectrophotometrically using a Zeiss PMQ II spectrophotometer as part of a high pressure apparatus, the detailed design of which has been previously described¹⁴. A 1 cm quartz cell was used throughout. Reactions were studied over a pressure range of $1-1500$ atm and at an ionic strength of $0.2M$ adjusted with NaClO₄. For the pressure depen-The studies the temperature was maintained at 25° U.

each reaction studied is known. completion and good pseudo first order rate plots were always obtained using the Guggenheim method fitted by a least squares program. All the rate constants shown are the mean result of at least three individual measurements. In the case of the hydrolysis of [Pt $(i\text{den})\text{Br}^{\dagger}$ in alkaline solution, where the plot of $ln k_1$ versus pressure is not linear, as shown in Figure 2a, a minimum of 7 runs were made at each pressure in order to determine most accurately the shape of the curve.

Figure 2. Pressure dependence plots for the reactions: (a) $[Pt(dien)Br]^+ + OH^- \rightarrow [Pt(dien)OH]^+ + Br^-$ (k₁ path); (b) $[Pt(dien)N_3]^+$ + $SCN^- \rightarrow [Pt(dien)SCN]^+$ + N_3^- (k₂ path).

Density Measurements

The density measurements were carried out at 25.000 ± 0.005 °C using a vibrating capillary apparatus. The apparent molar volume of each platinum complex was determined at a minimum of 4 different concentrations in the range 1.9 to $6.6 \times 10^{-3} M$ which encompasses the range of concentrations used in the rate studies. No attempt was made to adjust the ionic strength of these solutions.

The apparent molar volume of KN_3 was determined at 9 concentrations and shows only a slight linear dependence on concentration up to the maximum concentration studied of 0.1354 *M*.

Results

 $\frac{1}{2}$ ine principal reaction, as described by equation $\frac{1}{2}$ for the substrate $[Pt(dien)X]^+$, was studied with 8 different combinations of X and Y . For each of these reactions, except for the "base hydrolysis"¹⁷, the function $k_{obs} = k_1 + k_2[Y]$ was established at 6 to 8 different pressures within the range $1-1500$ atm and at 2-5 different concentrations of Y. One particular reaction, $[Pt(dien)Br]^+ + N_3^-$, was studied more intensively in an attempt to obtain the intercept on the

k ohs axis, kl, as accurately as possible and thereby k_{obs} axis, k_1 , as accurately as possible and thereby an accurate, independent value for ΔV^*_{exp} (1) for comparison with the directly determined value of $\Delta V_{\text{exp}}^{\text{+}}$ (1) for $[Pt(dien)Br]^{\text{+}} + OH^{\text{-}}$. The plot of $ln k_{obs}$ as a function of $[N_3^-]$ is shown in Figure 3 at the various applied pressures. The reaction of [Pt] (dien) Br ⁺ with $NO₂$ ⁻ was investigated because the direct attack of nitrite ion on the substrate is relatively slow, thus causing k_1 to be the dominant contribution to k_{obs} and allowing a more accurate evaluation of $\Delta V_{\text{exp}}^{\dagger}$ (1). All the pressure dependence rate data are summarized in Table I.

In order to make a comparison between the volumes and entropies of activation the available literature values for ΔH^* and ΔS^* were supplemented by studying the reaction of the bromo complex with $NO₂$ ⁻ as a function of temperature. These data are given in Table III. \blacksquare

It should be noted that for this reaction the k_2 value at one atmosphere pressure is significantly smaller than that given in the literature; *i.e.* $1.44 \times 10^{-3} M^{-1}$ sec⁻¹ at 25° C, cf. $3.7 \times 10^{-3} M^{-1}$ sec^{-1 15}. Apparently this results from the use of higher nitrite concentrations in our study which eliminates the contribution of the reverse reaction, a factor which is already discussed by $Gray^{15}$.

Figure 3. Pressure dependence of [Pt(dien)Br]⁺ with azide ion at 25° C.

Pressure atm	Nucleophile M	$10^4 \times k_{obs}$ \sec^{-1}	$10^4 \times k_1$ sec^{-1}	$10^3 \times k_2$ M^{-1} sec ⁻¹
	$[Pt(dien)Br]^+ + N_3^- \rightarrow [Pt(dien)N_3]^+ + Br^-$			
1	0.02	2.15 ± 0.06	0.89 ± 0.03	6.40 ± 0.02
	0.05	4.04 ± 0.01		
	0.10	7.37 ± 0.04		
	0.16	11.2 ± 0.3		
	0.20	13.6 ± 0.2		
250	0.02	2.45 ± 0.05	0.97 ± 0.07	7.08 ± 0.06
	0.05	4.45 ± 0.15		
	0.10	7.99 ± 0.03		
	0.16	12.4 ± 0.4		
	0.20	15.1 ± 0.2		
500	0.02	2.56 ± 0.08	1.06 ± 0.13	7.89 ± 0.10
	0.05	5.03 ± 0.16		
	0.10	9.11 ± 0.11		
	0.16	13.5 ± 0.1		
	0.20	16.9 ± 0.3		
750	0.02	3.17 ± 0.08	1.33 ± 0.18	8.93 ± 0.14
	0.05	5.68 ± 0.01		
	0.10	10.2 ± 0.2		
	0.16	15.9 ± 0.0		
	0.20	19.0 ± 0.4		

TABLE I. Pressure Dependence of the Rate Constants of the Reactions ($\mu = 0.2M$, 25°C).

TABLE I. (Cont.)

Pressure Effects on [Pt(dien)X]+ Substitutions 121

TABLE I. (Cont.)

Salt	Ū	Ion	Ū	Ref.
	ml mo $\mathsf{\Gamma}^1$		ml mo Γ^1	
[Pt(dien)Br]NO ₃	153.6 ± 1.0	$[Pt(dien)Br]^{+}$	120.3 ± 1.0	This Work
[Pt(dien)Cl]NO ₃	147.5 ± 0.4	$[Pt(dien)Cl]^+$	114.2 ± 0.4	This Work
[Pt(dien)I]I	170.9 ± 0.4	$[Pt(dien)I]^+$	129.9 ± 0.4	This Work
$[Pt(dien)N_3]ClO4$	172.2 ± 0.6	$[Pt(dien)N_3]^+$	121.5 ± 0.6	This Work
[Pt(dien)SCN]NO ₃	175.0 ± 1.0	Pt(dien)SCN] ⁺	141.7 ± 1.0	This Work
$[Pt(dien)py](NO3)2$	258.1 ± 1.1	$[Pt(dien)py]^{2+}$	191.5 ± 1.2	This Work
Pt(dien)NO ₂ NO ₃	155.8 ± 2.2	$[Pt(dien)NO2]+$	122.5 ± 2.2	This Work
KN_3	36.3 ± 0.1	N_3^-	31.8 ± 0.2	This Work
KSCN	44.7	SCN^-	40.2	22
KNO ₃	37.8	$NO3^-$	33.3	22
KClO ₄	55.2	ClO ₄	50.7	22
KI	45.5	Γ	41.0	22
КВг	33.9	Br^-	29.4	22
KCI	26.3	$C\Gamma$	21.8	22
NaNO ₂	25.0	$NO2-$	30.7	22
		K^+	4.5	23
		$Na+$	-5.7	22
(pyridine)	77.1 ± 0.3			This Work

TABLE II. Partial Molar Volumes of Salts and Ions in Water at 25°C.

Various authorsis, iy have proposed a variety of various authors to have proposed a variety o equations to "best fit" the lnk versus P plots in those cases where ΔV^{\dagger} _{exp} is dependent on pressure. The k_1 path for the substitution reactions of $[Pt(dien)X]^+$ complexes offers such an example. In the case of $[Pt(dien)Br]^+ + OH^-$ we attempted to obtain the exact empirical form of the curve drawn in Figure 2a by conducting many runs. As has been pointed out previously²⁰, in discussion of mechanisms one is primarily interested in the value of ΔV^{\dagger} _{exp} at 1 atm and hence the need is for accurate data at lower pressures. Here, in view of the experimental limits, the lowest pressure that we were able to obtain was 125 atm. However, despite these low pressure studies and the large number of runs conducted, the curvature at lower pressures was so acute that no satisfactory fit of these data could be obtained using the proposed methods and could be obtained using the proposed methods and equations. The sum the exception of the higher order polynomials. The success of the higher order polynomial equations is obviously not surprising and the real significance of their parameters must be treated with utmost caution. Therefore in these cases where a high degree of curvature is found, we prefer to use a simple graphic method which will give at least a minimum value of ΔV_{exp}^* . The ΔV_{exp}^* (2) for the corresponding k_2 path proved to be independent of pressure in the range studied. An example of this is shown in Figure 2b. α apparent models were obtained from α

Apparent moiar volume data φ_i were obtained from precision density measurements using the known equation²¹

$$
\varphi_{i} = \frac{M_{i}}{d_{o}} - 1000 - \frac{d_{i} - d_{o}}{d_{o}c_{i}} \tag{3}
$$

in which di and d, are the densities of the solution in which a_i and a_o are the defisities of the solution and solvent respectively; M_i is the molecular weight of the dissolved species; and c_i its molar concentration. No definite trend in the apparent molar volume data was observed over the range of concentrations studied, i.e. 7×10^{-4} to 1.2×10^{-1} M. Therefore, as a first approximation, the φ_i values may be taken as equivalent to the partial molar volumes. The results of these measurements, together with a number of relevant partial molar volumes taken from the literature²², are given in Table II. This table also contains the partial molar volumes of individual ions obtained on the assumption that the partial molar volume of K^+ is 4.5 ml mol^{-1 23}. \mathcal{F} m the data presented in Table I one can determine

From the data presented in Table 1 one can determine the volume of activation, ΔV^*_{exp} , according to the equation of Evans and Polanyi²⁴:

FABLE III. Temperature Dependence of the Rate Constar for the Substitution Reaction $[Pt(dien)Br]^+ + NO_2^- \rightarrow [Pt(dien)NO_2]^+ + Br^-$

Temp. $^{\circ}C$	$10^4 \times k_1$ sec^{-1}	$10^3 \times k_2$ M^{-1} sec ⁻¹
19.8	0.60 ± 0.04	1.09 ± 0.09
32.4	2.27 ± 0.07	3.89 ± 0.04
37.1	3.54 ± 0.09	4.78 ± 0.05
40.0	4.90 ± 0.04	6.88 ± 0.03

$\lceil \text{Fu} \rceil$ and $\lceil \text{Fu} \r$				
Substrate $[Pt(dien)X]^+$	Nucleophile	$\Delta V^*_{exp}(1)$ ml mo Γ^1	$\Delta V^*_{exp}(2)$ $ml \text{ mol}^{-1}$	ΔŪ $ml mol-1$
$[Pt(dien)Br]^{+}$	N_3^-	-15 ± 1	-8.5 ± 0.2	-1.2 ± 1.0
$[Pt(dien)Br]^{+}$	py	neg. ^a	-7.7 ± 0.5	$+23.5 \pm 1.2$
$[Pt(dien)Br]^{+}$	NO ₂	-18 ± 1	-6.4 ± 0.7	$+0.9 \pm 2.2$
$[Pt(dien)Cl]^{+}$	N_3^-	-17 ± 2^b	-8.2 ± 1.3	-2.7 ± 1.0
$[Pt(dien)I]^+$	N_3^-	$-18 \pm 2^{\rm b}$	-8.2 ± 0.7	$+0.8 \pm 0.6$
$[Pt(dien)N_3]^+$		neg. ^a	-12.2 ± 0.1	-0.8 ± 0.6
$[Pt(dien)N_3]^+$	SCN^-	neg. ^a	-7.3 ± 0.1	$+11.8 \pm 1.0$
$[Pt(dien)Br]^{+}$	$OH^{-}(H_{2}O)$	-18.0 ± 2.0		

TABLE IV. Volumes of Activation and Reaction for the Substitution Processes:

a k1 values were not accurate enough to calculate *AV',,, (I),* only its pressure dependence trend was taken. b In these ^a k₁ values were not accurate enough to calculate ΔV^+_{exp} (1), only its pressure dependence trend was taken. cases k_{obs} at the lowest nucleophile concentration, *i.e.* 0.05*M*, was taken to calculate ΔV^*_{exp} (1) approximately.

$$
\frac{\text{dlnk}}{\text{dP}} = -\frac{\Delta V^+_{\text{exp}}}{RT} - \Delta \nu \times RT \tag{4}
$$

If one uses molarity concentrations for the calcula tions of the rate constants, the correction term $(-\Delta v)$ RT) of equation (4) has to be applied including $\Delta \nu$, the algebraic sum of the stoichiometric coefficients during the formation of the transition state, and \varkappa , the compressibility of the solvent. On the other hand one can correct the rate constants obtained at individual pressures for the compression effect of the liquid system. Either method leads in our examples to a constant correction term of $+1.2$ ml mol⁻¹ for all activation volumes obtained from the second order rate constants. The corrected values of $\Delta V^{\dagger}{}_{\text{exp}}$ are summarized in Table IV together with the volumes of reactions, $\angle A\bar{V}$.

Discussion

As mentioned in the introduction, for liquid systems the values of ΔV_{exp}^* primarily consist of two contributions: the intrinsic part, ΔV^*_{intr} , and the solvation part, ΔV^*_{solv} . In principle, this applies to ΔV^*_{exp} derived for the k_1 path, ΔV^*_{exp} (1), as well as for the k₂ path, ΔV^*_{exp} (2). By assuming a basically associative mechanism^{$2-7$} for both paths one can exclude any electrostriction effects contributing to $\Delta V_{\text{exp}}^{\dagger}$ (1) as, in the first approximation, the mechanism merely involves the formation of a Pt-OH₂ bond. The values of ΔV^*_{exp} (1) are, in fact, independent of the nature of the potential leaving groups and lie between -15 and -18 ml mol⁻¹. Although this is consistent with either an A or I_a mechanism, the absolute values are far larger than would be expected for the simple formation of a Pt-OH₂ bond, where only the ΔV^{\dagger} _{intr} (1) term is involved. This is particularly apparent when
one considers that partial bonding is known to occur

petween solvent water molecules occupying the axia positions and the Pt(II) center of such square planar complexes. Furthermore, $\Delta V_{\text{exp}}^{\text{+}}$ (1) is certainly more negative than the corresponding values found for the water exchange reactions of complexes of the type, $[M(NH₃)₅OH₂]$ ³⁺ (where M = Cr(III)²⁵, Rh(III)²⁵, and Ir(III)²⁶), and $[Cr(OH₂)₆]³⁺²⁷$, for which an I_a, or possibly an A, mechanism is proposed. Here the most negative value of ΔV^*_{exp} obtained was for the latter reaction, *i.e.* -9.3 ± 0.3 ml mol⁻¹.

In addition, in the reaction with hydroxide ion, where k_1 could be accurately determined, a plot of $ln k_1$ against pressure shows an extremely sharp curvature. particularly at relatively low pressures (see Figure 2a). whereas the plots for the k_2 paths (see Figure 2b for example) are linear within experimental error as are those for the water exchange reactions mentioned above^{25, 26}. In other words, the volume of activation, ΔV^*_{exp} (1), exhibits a marked pressure dependence, while ΔV^*_{exp} (2) values remain essentially independent of pressure up to our measured limit of 1500 atm.

Two other studies on the effect of pressure on substitution reactions of $Pt(II)$ complexes exist in the literature^{28, 29}. Although these authors reported a linear dependence for their $ln k_1$ versus pressure plots we feel that a curve would better describe their data. Therefore, in view of these differences between the two paths, we prefer to discuss them individually.

Experimental results and theoretical considerations have shown that for a hypothetical, unsolvated species in solution, the intrinsic volume of activation is pressure independent³⁰ as long as small to moderate pressures are applied. Some workers $31,32$ have proposed a model in which the species under consideration is placed in a spherical cavity within a continuous medium. The cavity is considered to be both expandable and compressible and has a dielectric constant of unity. In the case of complex ions the cavity is occupied by a strongly bound, highly-ordered first co-

ordination sphere. Estimations of its compressibility, x , from the observed pressure dependence of the electronic absorption bands of crystalline complex salts³³ yielded values of ca. 1 to 2×10^{-6} atm⁻¹ for bivalent ions. This in turn gives rise to contributions to ΔV^{\dagger} _{intr} in the order of 0.1 ml mol⁻¹. Without doubt, these values become more significant for singly charged ions, but it is unlikely that the overall effect of compression of the unsolvated moiety will exceed the errors incurred in measuring ΔV_{exp}^* values.

 ΔV^*_{solv} , on the other hand, representing the difference in solvation between the initial and transition states, may well be pressured dependent inasmuch as the solvation of both states is differently influenced by pressure. This appears to be the case for the k_1 path, but not for the k_2 path. It is significant that curvature of the $ln k_1$ plot in Figure 2a virtually ceases at 1500 atm, which is unfortunately the maximum pressure attainable with our high pressure apparatus.

Several authors^{9, 18, 34, 35} have been able to interpret the curvature of lnk versus pressure plots in terms of an interchange mechanism involving solvent molecules in solvation sheaths of differing compressibilities around the reaction center. Kruse and Taube³⁶ originally proposed that for $(\partial \Delta V_{\text{exp}}^{\dagger}/\partial P)_{T}$ values greater than the compressibility of bulk water, ca. 7×10^{-4} ml atm^{-1} mol⁻¹, would be expected for aquation or water exchange reactions involving an \overrightarrow{A} mechanism. Notwithstanding our difficulties in determining $(\partial \Delta V^*_{exp}/\partial P)_T$ with any accuracy, a value of 3×10^{-1} ml atm⁻¹ mol⁻¹ can be approximated. This value is far too large to fit the type of treatment used by these workers^{9, 18, 34, 35} and indicates further that the curvature has another origin, although it does not presuppose that an A mechanism is not involved here.

Why ΔV^*_{solv} (1) is pressure dependent, and not ΔV^*_{exn} (2), is difficult to explain, if we continue the discussion within the framework of a basically associative mechanism. Here we can merely propose that the transition state for the k_1 path is strongly solvated, possibly enhanced by the increase in acidity of the incoming water molecule, to give an overall relatively incompressible structure. Conversely, one could argue that the complex in the initial state is surrounded by a loosely structured solvation sheath. However, this explanation would equally well apply to the k_2 path, giving rise to some pressure dependence of $\Delta V^*_{\text{exp}}(2)$.

In order to consider all possible origins of the unique behaviour of $\Delta V^{\dagger}_{\text{exp}}$ (1) let us consider briefly the k_1 path in terms of a dissociative mechanism, as shown in Figure 1a. In general terms, this should lead to a positive value for ΔV^*_{intr} (1) of about 5 ml mol^{-1 37} which must then be compensated by a ΔV^*_{solv} (1) value of $ca. -23$ ml mol⁻¹ to obtain the observed AV^*_{exp} (1) of -18 ± 2 ml mol⁻¹. Such a large value for $\widetilde{AV^+}_{solv}$ (1) appears incompatible with the formation of doubly and singly charged ions resulting from the dissociation of the leaving group. At first glance, ΔV^*_{exo} (1) would be expected to be strongly dependent on the nature of the leaving group for a dissociative mechanism¹⁸ and, as shown in Table IV, this is not the case. However, this argument can be examined quantitatively by considering the "volume equa- χ tion" treatment proposed earlier¹¹

$$
\bar{V}_{([Pt(dien)X]^+)} + \Delta V^*_{exp}(1) = \bar{V}_{([Pt(dien)]^{2^+})} + \bar{V}_{(X^-)} \qquad (5)
$$

The calculated partial molar volumes, given in Table III, for $[Pt(dien)X]^+$ and X⁻ permit the calculation of the intermediate, *i.e.* $\hat{V}_{([P_{t(dien)}]^{2+})}$, using equation (5). Application of this treatment to the three substrates, for which reasonably accurate values of ΔV^{\dagger} _{exp} (1) are available, yields the values shown in Table V. A mean value for $\bar{V}_{([Pt(dien)]^{2+})}$ of 73 ± 2 ml mol⁻¹ covers all three theoretical reactions and, in fact, if one assumes a $\Delta V_{exp}^{\dagger}(1)$ value of -18 ± 2 ml mo Γ^1 for the substrates $[Pt(dien)NO_2]^+$ and $[Pt(dien)N_3]^+$ one obtains 74 and 72 ml mol⁻¹ respectively, for $\bar{V}_{([Pt(dien)]^{2+})}$. For the cases of X = SCN and pyridine ΔV_{exp}^* would have to equal -29 and -41 ml mol⁻¹, respectively, to fit into this picture. The latter four reactions are too slow to measure with our present techniques. The surprising consistency of the data in Table III must be treated with some caution as a rough linear relationship between $V_{(Ptdien)X}$ ⁺) and $\bar{V}_{(X^-)}$ exists, which is in strong contrast with the corresponding values for $[M(NH₃)₅X]²⁺$ complexes³⁸, where $M = Co(III)$ and $Cr(III)$. In other words, the more "open" structure of the square planar complexes enables the potential leaving group ligands to be partially solvated as if they were free ions, *i.e.* the ligands possess some of their free ion character in the coordinated form³⁹.

In terms of a dissociative mechanism the pressure dependence of ΔV^*_{exp} (1) can be readily explained

TABLE V. Partial Molar Volumes of Individual Ions and the Hypothetical Intermediate, $[Pt(dien)]^{2+}$, in ml mol⁻¹ at

X	$\bar{V}_{([Pt(dien)X]^+)}$	$V_{(X^-)}$	ΔV^*_{exp} (1)	$V_{(\lceil \text{Pt(dien)}\rceil^{2^+})}$
CI	114.2 ± 0.4	21.8 ± 0.5	$-17. \pm 2.$	$75. \pm 3.$
Br	120.3 ± 1.0	29.4 ± 0.5	$-18. \pm 2.$	$73. \pm 3.$
	129.9 ± 0.4	41.0 ± 0.5	$-18. \pm 2.$	$71. \pm 3.$

by the difference in compressibilities of the ground and transition state (intermediate). This difference can now be attributed to the structural change in going from a square planar, singly charged ground state with loosely bound water molecules in axial positions to a doubly charged, virtual trigonal bipyramid with well developed metal-water bonds.

We now turn to the k_2 path, the mechanism for which is also believed to be associative^{2, 3, 6}, as supported by such criteria as: the rate law; the dependence of the rate on the nucleophilicity of the entering group; and the large, negative values of $\Delta S^* \rightarrow$. The expected contributions to the AV^{\dagger} _{exp} (2) values call for a negative value for ΔV_{int}^2 (2) as a consequence of bond formation between Pt and Y, and generally for a positive ΔV_{solv}^* (2) due to the partial charge neutralization. The latter contribution appears to be small, as no major difference in $\Delta V_{\text{exp}}^{\dagger}$ (2) can be detected for the reactions of the bromo complex with either pyridine, azide, or nitrite ions. Thus the $\Delta V^{\dagger}_{\text{intr}}$ (2) part essentially determines the observed experimental values of $\Delta V^*_{\text{exp}}(2)$.

In principle, both the Pt-Y bond formation process and the bond breaking of Pt–X contribute to $A V^{\dagger}$ _{intr} (2). However, the nearly identical values of $\Delta V_{\rm syn}^{\dagger}$ (2) shown in Table IV for the reactions between azide ion and the chloro-, bromo-, and iodo-complexes indicate that bond making is predominant, underlining the prevailing evidence for an I_a mechanism for this As mentioned previously, all plots of Ink2 *wrsus*

As mentioned previously, all plots of lnk₂ versus pressure show a linear correlation. Thus the change in solvation of the products and transition state is cither comparable or negligible. This leads to the possible assumption that the entering nucleophile Y is already weakly coordinated to the complex in the ground state, causing a solvation situation which is similar in the initial and transition states. Such a behaviour corresponds to an ion-pair pre-equilibrium. So far no strong evidence, such as a nonlinear dependence of k_{obs} on the free nucleophile concentration, has been found to substantiate an ion-pairing mechanism. Only some spectral evidence for the existence of a five coordinate intermediate $[Pt(NH₃)₂(NO₂)₂Cl]$ ⁻ has been reported⁴⁰ in the reaction of $[Pt(NH₃)₂(NO₂)Cl]$ with nitrite ion.

A comparison of the volume of activation, ΔV_{exp}^* (2), with the overall volume of reaction, $\Delta \bar{V}$, as given in the last column of Table IV, shows that in all cases ΔV^*_{exp} (2) is more negative than $\Delta \bar{V}$. In other words, the transition states are more compact than the products, which also supports the concept of an associative mechanism for this path.

With the deduced criteria for an essentially A type mechanism for the k_2 path and the indication that no major changes in solvation occur during the development of the transition state, one can use the partial molar volume of the reactants to calculate the volume of the transition state, [Pt(dien)XY], \bar{V}_{+} , as demon- α by equation θ .

$$
\bar{V}_{\pm} = \bar{V}_{\text{(complex ion)}} + \bar{V}_{\text{(nucleophile)}} + V^{\pm}_{\text{exp}}(2) \tag{6}
$$

The validity of this treatment can be verified by considering the reaction:

 $[Pt(dien)I]^+ + N_3^- \rightleftharpoons [Pt(dien)N_3]^+ + I^-$

Application of equation 6 for the forward and reverse reactions must then result in the same value for \bar{V}_{\pm} . Figure 4 shows the complete volume profile diagram. The common transition state differs by only 3.2 ml mol⁻¹, amounting to a mean value for V_{\pm} of 151.9 ± 1.5 ml mol⁻¹. The agreement is very good considering the number of parameters involved. This combined approach gives further strong support for an associative mechanism for the direct substitution processes. It does not, however, exclude minor stretching of the Pt-X bond leading to an I_a mechanism as suggested by Basolo et al.¹⁶

Several attempts⁴¹ have been made to correlate volumes and entropies of activation, mainly because both can be considered to include intrinsic and solvation contributions. A large amount of data on the activation enthalpies and entropies for the reactions studied here are available in the literature^{16,42}. The actual comparison of these results does not reveal any correspondence between ΔS^* and ΔV^* , apart from the overall sign. Such trends as the significantly more negative volumes of activation for the k_1 path are not confirmed by the entropy data. This may be taken as a point in favour of an associative mechanism for the k_1 path (Table VI).

Although this study has provided more quantitative evidence for an associative mechanism for the k_2 path it has raised more questions as to the character of the k_1 path. The ΔV^{\dagger} _{exp} (1) values presented here appear

Figure 4. Volume profile diagram for the reaction: [Pt(dien) $[I]^+ + N_3^- \rightleftharpoons [Pt(dien)N_3]^+ + I^-.$

Pressure Effects on $[Pt(dien)X]^+$ Substitutions

^a The average error in ΔH^* is ± 1 kcal mol⁻¹, in $\Delta S^* \pm 3$ e.u.

to favour a dissociative mechanism for this path as do investigations^{43,44} of the aquation reactions of $[PtA₂]$ $Cl₂$] (A₂ = 2NH₃ or en) and [PdLCl]⁺ (L = dien, Et_4 dien) in mixed aqueous solvents employing correlations with solvent dielectric constants or the Winstein-Grunwald parameter. A recent study⁴⁵ of the substitution reaction of an equilibrium mixture of $[PtCl₄]$ ²⁻ and $[Pt(OH₂)Cl₃]$ with SCN⁻, for which no k₁ path could be detected, also shows that the reactions of Pt(II) complexes are more complicated than com-
monly believed.

The financial support of the Deutsche Forschungsgemeinschaft for this work is gratefully acknowledged. The authors thank the Computer Center of the University of Frankfurt for the use of the Univac 1108 in the calculation of their results.

- 1 In part presented at the International Coordination Chemistry Conference, Moscow, 1972.
- 2 C.H. Langford and H.B. Gray, "Ligand Substitution Processes", Benjamin, New York (1965).
- 3 F. Basolo and R.G. Pearson, "Mechanisms of Inorganic Reactions", 2nd Edition, Wiley, New York (1968).
- 4 R.G. Wilkins, "The Study of Kinetics and Mechanism of Reactions of Transition Metal Complexes", Allyn & Bacon, Boston (1974).
- 5 M.L. Tobe, "Inorganic Reaction Mechanisms", Nelson, London (1972) .
- 6 L. Cattalini, "Mechanism of Square Planar Substitution", in "Reaction Mechanisms in Inorganic Chemistry", M.L. Tobe Ed., Butterworths, London (1972).
- 7 L. Cattalini, "Replacements in d^8 Square Planar Complexes", in "Progress in Inorganic Chemistry", Vol. 13, J.O. Edwards Ed., Interscience, New York (1970).
- 8 F. Basolo, H.B. Grav and R.G. Pearson, *J. Am. Chem. Soc., 82, 4200 (1960).*
- 9 D.R. Stranks, *Pure and Appl. Chem.*, 38, 303 (1974).
- 10 T.W. Swaddle, Coord. Chem. Rev., 14, 217 (1974).
- 11 D.A. Palmer and H. Kelm, "The Use of High Pressure Kinetics during the Elucidation of Reaction Mechanisms of Coordination Compounds in Solution", in Proceedings of the 4th International Conference on High Pressure, Kyoto (1974).
- 12 F.G. Mann, *J. Chem. Soc.*, 466 (1934).
- 13 R.M. Alcock, F.R. Hartley and D.E. Rogers, J. Chem. Soc., 1070 (1973).
- 14 F. K. Fleischmann, E. G. Conze, D. R. Stranks and H. Kelm, Rev. Sci. Instrum., 45, 1427 (1974).
- 15 H.B. Gray, J. Am. Chem. Soc., 84, 1548 (1962).
- 16 U. Belluco, R. Ettorre, F. Basolo, R.G. Pearson and A. Turco, *Inorg. Chem.*, 5, 591 (1966).
- 17 Although the reaction is performed in a basic medium, the mechanism involves water attack on the substrate followed by rapid proton loss to give the product [Pt] $(dien)OH$ ⁺
- 18 W.E. Jones, L.R. Carey and T.W. Swaddle, Can. J. Chem., 50, 2719 (1972).
- 19 S.W. Benson and J.A. Berson, J. Am. Chem. Soc., 84, 152 (1962).
- 20 G. Swieton, J. v. Jouanne and H. Kelm, "High Pressure Effects on the Kinetics of $(4\pi + 2\pi)$ - and $(2\pi + 2\pi)$ -Cycloaddition Reactions", in Proceedings of the 4th International Conference on High Pressure, Kyoto (1974).
- 21 A. Weissberger, Editor, "Physical Methods in Organic Chemistry", Vol. 1, p. 131, Interscience, New York $(1959).$
- 22 "Water and Aqueous Solutions: Structure, Thermodynamic and Transport Properties", R.A. Horne Ed., Chapt. 13, Wiley-Interscience, London (1972).
- 23 F.J. Millero, *J. Phys. Chem.*, 73, 2417 (1969).
- 24 M.C. Evans and M. Polanyi, Trans. Faraday Soc., 31, 875 (1935).
- 25 T.W. Swaddle and D.R. Stranks, J. Am. Chem. Soc., 94, 8357 (1972).
- 26 S.B. Tong and T.W. Swaddle, *Inorg. Chem.*, 13, 1538 (1974) .
- 27 D. R. Stranks and T. W. Swaddle, *J. Am. Chem. Soc.*, 93, 2783 (1971).

- 28 T. Taylor and L.B. Hathaway, Inorg. Chem., 8, 2135 $(1969).$
- 29 H.E. Brauer, L.R. Hathaway and K.R. Brauer, Inorg. Chem. 5, 1899 (1966).
- 30 W.J. Le Noble, "Kinetics of Reactions in Solutions under Pressure", in "Progress in Physical Organic Chemistry", Vol. 5, p. 235, Interscience, New York (1967).
- 31 E. Whalley, J. Chem. Phys., 38, 1400 (1968).
- 32 D.L. Gay, *Can. J. Chem.*, 49, 3231 (1971).
- 33 N.S. Hush, *Discuss. Faraday Soc.*, 26, 154 (1958).
- 34 A.B. Lakeef and J.B. Hyne, Can. J. Chem., 47, 1369 (1969) .
- 35 H.S. Galinkin, W.G. Laidlaw and J.B. Hyne, Can. J. Chem., 44, 2193 (1966).
- 36 W. Kruse and H. Taube, J. Am. Chem. Soc., 83, 1280 37 R. C. Neuman, Jr., *Act.* Chem. *Res., 5,* 381 (1972).
-
- 38 D.A. Palmer and H. Kelm, to be published.
- 39 It is understandable that particular assymetric ligands such as pyridine do not obey this relationship as in their coordinated form the only site for strong solvent interaction is removed and the remainder of the ligand presents a hydrophobic, benzene-like, structure to the solvent.
- 40 P. Haake, Proc. Chem. Soc., 278 (1962).
- 41 H. Heydtmann, A.P. Schmidt and H. Hartmann, Ber. *Bunsenges. Physikal. Chem., 70, 444 (1966).*
- 42 S.C. Chan and F.T. Wong, *J. Inorg. Nucl. Chem.*, 34, *3274 (1972).*
- 43 V.D. Panasyuk and N.F. Malashok, Russ. J. Inorg. Chem., 14, 661 (1969).
- 44 L.A. P. Kane-Maguire and G. Thomas, J. Chem. Soc. *Dalton*, 1890 (1975).
- 45 R.J. Mureinik, *Inorg. Chim. Acta, 13, 127 (1975)*.